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ABSTRACT

KEYWORDS: Cache Replacement; Reinforcement Learning; Reuse Distance.

Cache Replacement has been at the heart of computer architecture’s problems to improve

performance. A tremendous amount of research has gone into uplifting results close to

the bound of optimal policy, which Belady’s MIN gives. We do the literature review for

modern cache replacement using reinforcement learning techniques and deep learning

techniques. We began exploring our ways into this vast space of cache replacement by

implementing a traditional approach involving the use of the SHIP table from the policy

by Wu et al. (2011). This helped us to study the simulator and evaluate some metrics

based on the traces of benchmarks we ran and understand the performance gain or loss.

We study the paper by Sethumurugan et al. (2021). The work is done with the use of

a Reinforcement Learning based technique called Q-learning combined with a Deep

Neural Network to give insights into the selected features representing cache memory

access patterns for a particular block in a set which involves preuse distance, hits since

insertion, LRU position, access type to name a few. This simulator is discussed in detail

in further chapters, where we talk about neural network and heatmap analysis. This

simulator written in python is used to implement and run agents to train and test on a few

sample traces. These traces are analyzed to pick a few features leading to the creation

of a policy that we tried to reproduce on the Champsim, where we saw a decrement of

around 4% in relation to baseline policy LRU. We were able to learn some insights from

these that might help build a sound policy based on the quantification of access patterns

and relate the weights of features to these. We present our future insights into these in

chapter 3. We discuss the results and analysis in detail about these in chapter 4.
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CHAPTER 1

INTRODUCTION

A cache is a smaller, faster memory situated near a processor core that stores copies

of data from frequently accessed memory locations. Data is moved between memory

and cache in fixed-sized units known as cache lines or cache blocks. When a cache line

is transferred from memory into the cache, a cache entry is formed. The cache entry

will include both the copied data and the requested memory address. When the CPU

needs data, it immediately checks in cache memory whether it has data or not. If data is

present, it results in a cache hit; else, if data is not in cache memory, it results in a cache

miss. In case of a cache miss, the CPU retrieves data from the main memory and inserts

a block of data into the cache.

As the cache memory size is limited, on a cache miss to make room for new entry, the

cache may have to evict one of the existing entries. The replacement policy refers to the

heuristic it chooses which entry to evict. The underlying challenge with any replacement

strategy is that it must forecast which existing cache line is least likely to be used in the

future. Because forecasting the future with 100% certainty is impossible, there is no ideal

strategy for selecting among the various replacement plans available. Cache replacement

policies specify different ways to evict an item from the cache with it is full. Some of

the examples of cache replacement policies are FIFO (First In, First Out), in which the

line that enters the cache first is evicted first, LRU (least recently used) in which line that

has been unused for the longest time gets evicted, LFU (least frequently used) in which

line which has least access count gets evicted. The best policy is Belady’s MIN policy

because it will always evict the line that will not be needed for the longest time in the

future. But this is theoretical and can’t be implemented in real-life since it is generally

impossible to predict with certainty that exactly how far in the future information will be

needed. Several static cache replacement algorithms have been developed, but they are

restricted to a subset of access patterns and perform poorly in complex circumstances.

Cache replacement policies are continually evolving to achieve the theoretical out-

comes outlined by Belady’s MIN algorithm. The application of ML/DL/RL to cache



replacement problems is becoming more popular. Machine learning has made significant

advances in natural language processing, computer vision, audio recognition, and time

series analysis. The use of these sophisticated and powerful technologies in computer

architecture is not new and has been intensively researched to improve some areas such

as branch prediction, cache replacement, and data prefetching. However, there are a

few challenges to overcome when applying it to hardware predictors. Training a neural

network involves massive amounts of data and resources, necessitating offline training.

However, the offline model is less successful for an extensive range of computer pro-

grams with dynamic access patterns changes. Another critical difficulty is deploying the

offline model on a hardware chip with limited memory. The model’s prediction time can

be a problem in time-critical applications. Apart from this, specific policies need hard-

ware changes, which may incur additional costs. Nonetheless, machine-learning-based

cache replacement algorithms beat static heuristics and may be regarded as a viable

solution for improving overall system performance.

1.1 Objectives and Scope

Cache memory plays a very important role in improving overall system performance

by reducing latency during program execution. The problem is to effectively manage

a limited size cache, so minor cache misses occur. Our objective is to come up with

a cache replacement policy for LLC1 to improve the performance, and the scope is

to analyze it using simulators. We used the Champsim simulator for heuristic-based

policies and an open-source gym environment for implementing reinforcement-based

cache replacement policies. We used the metrics like IPC(instructions per cycle), and

LLC hit rate to compare our policy with other existing policies.

1The L1 and L2 caches are fixed with LRU policy simulators only give option to test policy on LLC

2



CHAPTER 2

Literature Review

Liu et al. (2020) cast cache replacement as an imitation learning problem, and the

goal is to design a policy that will imitate Belady’s policy. They trained a policy on an

episodic Markov decision process. State at timestamp t, st = (sc
t ,s

a
t ,s

h
t ) has 3 components.

sa
t = (mt , pct) is cache line address which is accessed at time t and program counter

of instruction at time t. sc
t = (l1, l2, . . . .., lw) contains the address of cache lines which

belong to the same set as accessed by sa
t . sh

t = (m1,m2, . . . .,mt−1, pc1, pc2, . . . , pct−1)

is the history of all past cache accesses. Action at timestamp t is, If cache miss occurs,

action ∈ {1,2,3, .....,w} where action w represents evicting line lw . If a cache hit occurs,

then no action ano−op is used since no cache line needs to be evicted. Reward R(st) = 0

if cache miss otherwise 1. The goal of the policy is to maximize the total number of

cache hits, ΣR(si), i : [0,T ]. They used a machine learning model to learn the weights of

each element in the state. Access history and current access are input to LSTM, which

will output cell state and hidden state. For each line in the currently accessed cache set,

the context for each line will be formed, which will depend on hidden states and the

embedding of each line address in the set. A final dense layer with softmax activation

will be applied to the context of each line. Then the policy will choose the action based

on the values we get from the final layer for each line. During training, parameters of

the model are updated based on the loss function, which calculates the loss value of the

current state with respect to belady’s policy.

Shi et al. (2019) formulated cache replacement as a sequence labeling problem

where the goal is to label each access in a sequence with a binary label. The input is

a sequence of loads identified by their PC, and the goal is to learn whether a PC tends

to access lines that are cache-friendly or cache-averse. They chose to identify loads

by their PC instead of their memory address because there are fewer unique PCs, so

they repeat more frequently than memory addresses which speed up training. Another

reason is size and learning time of LSTM both grow in proportion to the number of

unique addresses, so identifying loads by memory address is not feasible. This paper

proposed an attention-based LSTM learning model for cache replacement in an offline



setting. Input to the model is the sequence of load instructions (PCs), and output is binary

prediction to each element in a sequence indicating whether the corresponding load

should be cached or not. They use a three-layer model. The first layer is the embedding

layer, the second is 1-layer LSTM, and the third is the attention layer. From training

the LSTM model in an offline setting, they derive three insights. First is model benefits

from a long history of past PCs(particularly the past 30 PCs, after that no significant

improvement). Second, the model can achieve good accuracy based on just a few source

memory accesses. Third, Prediction accuracy is largely insensitive to the order of the

sequence. Based on these insights, they propose a simple ISVM model which is easier

to implement in hardware.

In the paper, Jain and Lin (2016) cache replacement algorithm can nonetheless learn

from belady’s MIN algorithm by applying it to past cache accesses to inform future

cache replacement decisions. When applied to a memory-intensive subset of the SPEC06

benchmark, their solution improves performance over LRU by 8.4%. In this paper, they

try to learn from belady’s optimal policy called OPT and then generate a predictor trained

to decide based on OPT policy. This predictor is named Hawkeye by the authors of the

paper. The two main concerns involved in this approach are that it needs an efficient

mechanism to regenerate OPT and the second is that it needs some large window of

history to achieve certain accuracy. These problems are resolved by using liveliness

intervals that capture both demand and reuse distances. The second problem is resolved

by using set sampling.

The OPTGen part of the algorithm defines X to X’ as the usage interval where X is

the just past access of the same address as X’. It uses an occupancy vector to determine

whether X’ would be a cache hit based on the number of liveliness intervals overlapping

if they are greater than the cache capacity. The updating of the occupancy vector is

based on the decision made by OPTGen whether the current usage interval of X has

all elements less than cache capacity then only it increments all the elements by one.

The initial access of X is set to 0 always. The Hawkeye Predictor learns whether loads

by a given instruction would have resulted in hits or misses under the OPT policy. If

OPTgen determines that a line X would be a cache hit under the OPT policy, then the

PC that last accessed X is trained positively; otherwise, the PC that accessed X last is

trained negatively. Hawkeye first chooses to evict cache-averse lines, as identified by

4



the Hawkeye Predictor. On every cache access (both hits and misses), the Hawkeye

predictor generates a binary prediction to indicate whether the line is cache-friendly or

cache-averse. This prediction is used to update the RRIP counter, which determines the

relative priority of eviction of cache lines.

Sethumurugan et al. (2021) uses Deep Reinforcement Learning to learn a cache

replacement policy. After analyzing the learned model few critical features that are

going to impact the cache replacement decisions are extracted. The replacement policy

RLR(Reinforcement Learned Replacement) is generated in this paper by using insights

from the RL agent. This paper provides a systematic analysis of feature selection and

the importance of feature selection. Selected features are used to form a policy and

tested in the champsim simulator. On average, RLR sees improvements on single-core

by 3.25% and four-core system performance by 4.86% over LRU, with an overhead of

16.75KB for 2MB last-level cache (LLC) and 67KB for 8MB LLC. This paper involves

problem formulation of cache replacement in terms of reinforcement learning to analyze

the practical implementation of the policy.

Problem formulation involves defining the state space, action space, and reward for

the RL agent. The state-space involves some features picked which they thought as useful

for decision in cache replacement like access type for line, set accesses, set accesses

since misses, line pursue distances, LRU count for cache lines, hits since insertion, etc.

The action is just the index of the cache line to be evicted. The reward is defined in

such a way that it drives the agent to behave like belady’s optimal policy. The agent is

made up of a deep Q-network that involves a training mechanism via the MDP(Markov

Decision Process). From the insights generated by the RL agent, the standout features of

state-space were used to formulate a cache replacement policy(RLR). This RLR policy

is just a formula involving priority calculation based on three major features selected,

which were line preuse distance, last access type for the line, and hits from insertion till

the current time step. This priority helps to perform eviction, and LRU bits are used to

break the tie in case of multiple same eviction priorities. The weights assigned to the

priority of preuse distance is eight while the rest others are 1. The problem with this

static weights approach is that it doesn’t adapt to varying cache access patterns. These

problems and analysis of this paper are done in chapter 4 by us.

5



CHAPTER 3

Cache Replacement Techniques Implementation and

Analysis

3.1 Our Modification to SHIP

The paper reffered is the classical one in cache replacement by Wu et al. (2011). We

developed a policy based on extension of SHIP’s idea whose results on few benchmarks

are also presented below in terms of LLC access latency. While the complete statistics

will be discussed in Chapter 4.

3.1.1 SHIP - Signature Based Hit Predictor

The signature is nothing but a hash generated from any entities we want to capture

information about. In this case we want to predict re-reference behaviour of incoming

cache line, so they used hash table to store signature based hit counts referring to basically

how many times a particular block was accessed by address generated by that PC. This

SHCT(signature based hit count) table is used to learn the RRPV(re-reference prediction

values) values for every cache line. In simple words if the cache hit occurs we increase

value of SHCT corresponding to current signature and set it’s outcome bit to true, while

if it’s a miss then we check if it’s outcome was false which means it wasn’t used at all

so we decrement the SHCT value for it’s signature. Now we bring in the new block by

replacing block with low RRPV value and set the RRPV of new block according to the

new signatures value in SHCT. If SHCT is high we predict distant RRPV else we predict

intermediate RRPV, where RRPV values range from 0-7 hence needing only 3 extra bits

per entry for storage. Now to reduce storage in hardware set sampling is used. Since

to develop policy only learning RRPV from few sets is sufficient hence we defer from

using SHCT for all sets rather we create sample class for selecting few sets among all.



Figure 3.1: SHIP Implementation

3.1.2 Our policy inspired from SHIP

Now SHIP just retrieves data about re-reference from SHCT table from sampled sets.

In our case we modify it a little bit, instead of keeping rrpv values table we maintain

two entries per cache block. The one denoting frequency of reuse and the other if it is

most recently used. The algorithm removes the block which is not in mru position and

lowest reuse frequency. The SHCT table sets the reuse frequency based on count. If it’s

a hit, reuse frequency is set to 0 and mru of that is set to 1 and rest others’ mru bit is set

to 0. If it’s a miss the reuse frequency of new block inserted is dependent on SHCT of

the signature from which this block address was generated. In our case we use 3 bits

for frequency counter and 3 bits for SHCT entry so we assign frequency equal to SHCT

value itself when a new block comes.

7



Algorithm 1: Eviction of Victim
1 reused_val = 0

2 evict[LLC_WAY ]

3 while true do

4 count_reused = 0

5 for way = 0 to LLC_WAYS {

6 if reuse_frequency[S][way]==reused_val && MRU[S][way]==0 then

7 evict[count_reused] = way

8 count_reused++

9 }

10 if count_reused > 0 then

11 return evict[rand()%count_reused]

12 else

13 reused_val++

14 if reused_val==maxRRPV then

15 return rand()%LLC_WAY

Algorithm 2: Updation of Reuse Frequencies based on SHCT

1 if hit then

2 if reuse_frequency[s][b]<maxRRPV then

3 reuse_frequency[s][b]++

4 else

5 for way = 0 to LLC_WAYS {

6 reuse_frequency[s][way] /= 2

7 }

8 else

9 SHCT_idx = ip % SHCT_PRIME

// SHCT_PRIME is prime number close to number of blocks and ip is program

counter which generated address

10 reuse_frequency[s][b] = 0

11 if SHCT [cpu][SHCT _idx]> 0 then

12 reuse_frequency[s][b] = 1

The following tables present the metrics IPC and LLC access latency(in terms of

cycles) for LRU, Our policy and SHIP respectively.

Trace Name LRU LLC_LAT MY_REPL LLC_LAT SHIP LLC_LAT
600.perlbench_s 153.945 153.826 150.618

602.gcc_s 282.53 292.932 276.362
605.mcf_s 131.008 138.561 120.571

607.cactuBSSN_s 77.3572 77.3455 77.2765
620.omnetpp_s 133.033 137.575 138.293

Table 3.1: Last level cache access latency for LRU, Our replacement policy and SHIP
policy
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CHAPTER 4

Reinforcement Learning driven cache replacement

4.1 The background and foundations of Reinforcement

Learning

Reinforcement learning (RL) is growing as a subset of machine learning in which

software agents take action and take action in the hope of maximizing high-priority

rewards. There are several different forms of feedback that can determine how the RL

system works. Compared to a supervised learning algorithm that maps a function from

input to output, the RL algorithm usually does not include the target output (only the

input is specified). The basic RL algorithm has three components: the agent (which

can commit the action in its current state), the environment (which reacts to the action

and provides the agent with new input), and the reward (the incentive or cumulative

mechanism returned by environment). The basic scheme of the RL algorithm is shown

below.

Figure 4.1: Schema Of RL

Definitions
• Action (A): is defined as the possible moves that agent can take at this step
• State (S): The situation in which the environment currently exists.
• Reward (R): An immediate return send back from the environment to evaluate

the last action.
• Policy (π): Based on the current state whatever strategy is adopted by the agent is

known as the policy.



• Value (V): The expected long-term return with discount, as opposed to the short-
term reward R. The expected long-term return of the current state sunder policy π

is defined as Vπ(s).
• Q-value or action-value (Q): Q-value is similar to Value, except that it takes an

extra parameter, the current action a. Qπ(s, a) refers to the long-term return of the
current state s, taking action a under policy π .

4.2 Deep Reinforcement Learning

In Deep Q-Learning, we utilise a deep neural network to approximate the ideal

Q-function by estimating the Q-values for each state-action pair in a given environment.

Deep Q-learning is the process of combining Q-learning with a deep neural network.

Deep Q-Network, or DQN, is a deep neural network that approximates a Q-function.

Deep Q-Network: The network outputs estimated Q-values for each action that can be

taken from a given state input. The goal of this network is to approximate the optimal

Q-function.

Figure 4.2: Deep Q-Network

How Deep Q-network is trained?

Experience replay: To train deep Q-networks we utilize a technique called experience

replay. With experience replay, we store agent’s experiences at each time step in list

call called replay memory. At time step t, we define agent’s experience at time step t

as et = (st ,at ,rt+1,st+1) where st is state of environment at time t, at is action taken

10



by agent at time t, rt+1 is reward given to the agent at time t + 1 and st+1 is state of

environment at time t +1.

Policy Network: We sample a random batch from replay memory at pass it to policy

network. The model then outputs an estimated Q-value for each possible action from the

given input state. Then loss is calculated by comparing Q-value output from Q-values

given by target network.

Target Network: The target network is a clone of the policy network. Its weights are

frozen with the original policy network’s weights, and we update the weights in the

target network to the policy network’s new weights every certain amount of time steps.

Deep Q-Learning : Algorithm

Algorithm 3: Deep Q-learning with Experience Replay
1 Initialize replay memory D to capacity N;
2 Initialize action-value function Q with random weights;
3 for episode = 1, M do
4 Initialize state st ;
5 for t = 1, N do
6 With probability ε select a random action at ;
7 Otherwise select at = maxa Q∗(st ,a;θ);
8 Execute action at and observe reward rt and state st+1;
9 Store transition (st ,at ,rt ,st+1) in D;

10 Set st+1 = st ;
11 Sample random minibatch of transitions (st ,at ,rt ,st+1) from D;
12

Set y j =

{
r j, f or terminal st+1

r j + γmaxa′Q(st+1,a
′
;θ), f or non− terminal st+1

}
(4.1)

Perform a gradient descent step on (y j - Q(st ,at ;θ))2;

4.3 Problem Formulation

Reinforcement Learning is a machine learning paradigm in which an agent tries to

navigate through an environment by choosing an action from a set of allowed actions.

Using the suggested action, the environment moves from the current state to the next

state and generates a reward as feedback to the agent. The agent tries to maximize reward

over a certain period of defined time. Q learning is one way of doing this via maintaining

11



a state action table and applying the bellman optimization function overtime to get the

maximum cumulative reward. However, it could be infeasible to implement such a table

when the state and action space is enormous. In such a scenario, a neural network can be

used as a function approximator in place of a table.

Since the effect of the action is Markov, RL has the potential to learn the theoretically

optimal policy. RL is suitable for cache replacement problems because it adapts to

dynamic changes in the environment and can handle the critical consequences of selected

actions. Cache replacement is represented as a Markov decision process (MDP) in which

the agent makes the replacement decision. Given the state of the cache, the replacement

decision made by the agent causes the cache to move to the new state. Agents are

rewarded based on how close the exchange decision is to BELADY (optimal). Our

framework uses the RL algorithm to train neural networks and learn replacement policies.

It analyzes the neural network and uses the insights gained from the neural network to

derive a viable replacement algorithm for the hardware implementation. This section

details the simulation framework and architecture exploration flow.

The simulation and testing consist of two parts, trace generation, and RL training. We

use ChampSimISCA (2017) from the 2nd Cache Replacement Championship (CRC2)

to generate LLC access traces. The trace file comprises a record of <PC, Access Type,

Address> for each LLC access. Access types include load (LD), request for ownership

(RFO), prefetch (PR), and writeback (WB). The trace is fed into a Python-based cache

simulator taken from a gym environment provided by the Imitation Learning paper by

Google, where we have implemented an RL agent inside modifying the state space. The

cache simulator employs the same LLC setup as ChampSim and populates the LLC with

the addresses that have been accessed. Each cache line is associated with a collection of

cache states. In the diagram above, you can see the simulation framework. The cache

simulator updates the cache state on a hit and moves on to the subsequent access. On a

non-compulsory miss, the cache simulator interacts with the agent to make a replacement

decision.

1. A state vector is given to the agent, containing information about the missed access
and the accessed set.

2. For an n-way set-associative cache, the agent assesses the state vector and produces
an output vector with n entries.

3. The value of each element in the output vector corresponds to a way in the cache
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set, and it indicates how beneficial it is (from the agent’s perspective) if that way is
picked for eviction. The cache simulator then makes a replacement choice based
on the output vector provided by the agent while also generating and sending a
numerical reward to the agent for additional training.

4. Below we explain the critical components in detail.

State Vector: The information needed to make a replacement choice is included in

the LLC state vector. We divided the LLC state into three types of information: a)

access information, which represents the current cache access; b) set information, which

describes the set being accessed; and c) cache line information, which describes each

cache line in the accessed set. The statistics of the accessible set are updated with each

LLC access. The set access counter, for example, is increased with each access to the set.

For instance, on every hit to the set, the set access counter since miss is increased, and on

a miss, it is reset to zero. Similar counters are maintained for every cache line in the set.

In the case of an eviction, the cache line counts are reset to begin counting for the newly

added cache line. Cache lines are additionally enhanced to hold additional information

such as the last access date, the kind of previous access, the dirty bit, and other essential

aspects. Table II contains the complete feature list for the LLC state. One-hot encoding

is used for categorical information like the last access type. Access count is a numerical

property normalized by its greatest value and displayed as a fractional number between

0 and 1. The feature offset is the lone exception, for which we utilize a 6-bit binary

representation (assuming 64-byte cache lines). We use 334 floating-point values to

represent a state vector for a 16-way set associative LLC.

Figure 4.3: Features required for agent
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Agent and it’s architecture: The agent takes the feature vector obtained by running the

routine of state to feature transformation. This feature vector is of size 248, which is

passed to an agent which transforms this to output via a deep neural network to the size of

16, which is cache associativity. These values correspond to the eviction priority of each

cache line. The one with a minimum value is considered for eviction. The agent contains

a neural network of four layers, with the first input layer having 248 neurons, a second

hidden layer having 64 neurons, a third hidden layer having 32 neurons, and finally,

the 16 layer output. The activation function used is RELU based on experimentation

performed with RELU, softmax, tanh, and sigmoid.

Figure 4.4: Simulation flow diagram

Replacement Decision: For each cache way a value is returned by agent which means

that a n element vector is returned by agent for n-way associative cache (e.g. 16-element

vector for a 16-way cache). The replacement decision is made by an ε greedy approach,

in which we choose the victim with the maximum value with a probability of 1-ε and

randomly select a victim with a probability of ε . Random actions explore new trajectories

and expand the search space. In our training mode, we do epsilon decay starting from 1

with a decay factor of 0.99985.

Reward: The reward assigned is to make the agent learn how to behave like the optimal

policy BELADY. Thus we have rewards assigned relative to reuse distances of cache

lines. The positive reward is assigned if the cache line evicted is the same as belady’s

decision. The neutral reward is assigned if the cache line evicted has a reuse distance

more than the incoming cache line. For all other cases, a negative reward is assigned.
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Training: For training, the mechanism explained in the previous section is used. An

experience replay buffer is used. A neural network is trained using a batch of sampled

tuples from the buffer. The training parameters were chosen by simply running through

all combinations to get the best set of parameters corresponding to randomly selected

traces. The below figure demonstrates hit rates for a trace with different combinations of

parameters.

Figure 4.5: Hit rate and Average reward comparison for different combination of param-
eters

4.4 Results and Analysis

• Heatmap Analysis: The analysis was performed based on the weights assigned by
the neural network to each of the features assigned. From what we see for different
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traces, we trained agents, and it assigns weights differently for each trace based
on the relevance of the feature corresponding to the trace. All the features related
to set accesses are almost 0 as they are not relevant for replacement decisions. In
contrast, we find some non-zero values that we can consider an imperfection in the
agent. For trace 403.gcc, we find PC the most relevant, followed by dirty bits with
relative weights of 1 and 0.94, respectively. On the contrary, in trace 450.soplex,
we see that the PF access count has the highest weight, followed by hits since
insertion. In the case of 470.lbm, we see that almost all relevant features(excluding
set access-based features) have the same weight, with the highest weight for dirty
bits followed by writeback access count, which is logical as both are related. On
average, the features that shine out are dirty bit, pcs, recency, preuse distance, and
last access type.

Figure 4.6: Heatmap Analysis

The heatmaps evolution for a single trace is also depicted in the figure as shown.
The weights are being trained over time, and the relevant features get high weights.
Over the last 100-300 iterations, we see the heatmap becomes stationary to partic-
ular weights.
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Figure 4.7: Heatmap Evolution

• Statistics for different traces: The hit rates for the different policies and our
agent are plotted below. A different agent is used for every trace. So accordingly,
the performances are recorded. We have train hit rates as well as test hit rates
plotted.

Figure 4.8: Train hit rates for different policies

The train hit rates show improvement over LRU in 429mcf, 470lbm, and 483xalanc.
In contrast, others are close or differ by a significant margin.
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Figure 4.9: Test hit rates for different policies

In test statistics, hit rates of 429mcf, 459gems, 470lbm, and 483xalanc are close to
or above LRU. The 429mcf performs almost close to belady.

• Statistics for individual feature: We picked seven features: access preuse, line
preuse, line access type, access type for incoming request, access counts, hits,
recency, and pcs. We tested agents using these features for each trace to see their
impact on replacement decisions. We plot the results below for each feature per
trace.

Figure 4.10: Hit rates feature wise for each trace

As we can see, there is no difference between the hit rates when features are used
individually. So this experiment didn’t let us infer much about feature importance.

• Insights from the above all results and statistics: The all of above results lead
us to infer few of the following observations:-
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– There are only a few relevant features that are important in the replacement
decision to imitate belady.

– The features help in predicting reuse distance for a block in a way to imitate
belady.

– Individually features have no value; only a linear combination with some
weights helps derive a better policy.

4.5 Towards Practical Implementation on chip

The insights show that a few features are relevant in performing the cache replacement

with varying importance for each trace. About the paper by Sethumurugan et al. (2021).

The top features useful are preuse distance for each line, access type for each line, hits

since insertion, and recency bits. While we could not reproduce the weights on an

average, we propose to build upon the policy they have prepared from insights using

these features. So below is the explanation of every feature and its usage to build up a

policy:-

1. Line Preuse:- The line preuse denotes the past reuse distance of the line. The
distance between current access and the last access to the particular line is known
as preuse distance. The preuse distance of the line is related to reuse distance such
that 90% of the cache line have |reuse distance - preuse distance| < 50. So as an
estimate, we use preuse distance with some modifications as a proxy for reuse
distance.

2. Line Access Type:- The access type of line has four categories, namely LD, RFO,
PF, and WB. Based on the analysis done, most of the evictions by the agent were
done early on for a line whenever PF was access type for that line.

3. Hits since insertion:- If the number of hits is zero, that line was evicted with a
higher probability than any line with non-zero probability.

4. Recency:- The eviction of lines by the agent was inversely related to LRU. The
one with the most recent access was removed over different traces than the one
with the least recently used line.

According to the paper by Sethumurugan et al. (2021) the implementation involves a

priority formulation as shown in the figure below:-
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Figure 4.11: Priority based formula based on above features

We propose to improve the above implementation of this given formula with static

weights to rather dynamic weights. Based on the observed evolution of weights while

training, we find out that DNN tries to adjust itself to the pattern over the first few

iterations of an access pattern and stabilizes its weights for the next few 1000 iterations

it stabilizes its weights. Hence, this leads us to infer that many different access patterns

over trace lead to dynamic changes in priority for weights of each feature used. In the

above figure, we can see that a weight of 8 is assigned to preuse distance, and weights

of 1 are assigned to both hits since insertion and last access type. In case of a tie-break,

recency bits are used.

The idea is to quantify access patterns somehow, i.e., spatial locality and temporal

locality, and use them to adjust the weights of the features selected. Some of the previous

techniques to quantify locality have been Weinberg et al. (2005) and Anghel et al. (2013).

4.6 Hardware Budget

Hardware Overhead of RLR

Each cache line has
• 2 bit Age Counter.
• 1 bit Hit Register.

So total 4 bits of overhead per cache line.

For 2MB 16 way LLC with 64B cache line, total storage overhead of RLR is 16.75KB.

Hardware overhead of modified SHIP
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In SHiP, 14 bit for signature and 1 bit for outcome is required for SHCT to learn

the reuse pattern for the signature. Along with that modified SHIP, we used 3 bits for

f requency counter and 1 bit for mru position for each line. So, a total of 19 bits of

overhead per cache line. We used the set sampling technique in which we used 256 sets

for 2MB 16-way associative LLC. So, the total storage overhead for modified SHiP is

4KB.

4.7 Further Literature review and ideation for novel

cache replacement using traditional techniques

After doing all the analysis on the simulator by the paper Liu et al. (2020) we figured

out some insights that we discussed in the previous section. The insights make us believe

that if we want to choose some heuristics for policies, their weights need to be learned

on the go rather than assigning them static weights for a full run on the benchmark. This

work has been best done by a paper Teran et al. (2016) which uses the perceptron model

of learning weights on the go for various important features picked. This is a lightweight,

hardware-friendly method adopted in place of a hard-core ML algorithm. We rather

digress here to analyze a few more policies in reuse distance-based cache replacement

rather than these heuristics-based cache replacement.

One such paper by Keramidas et al. (2007) is used to emphasize the use of reuse

distance and ETA(Expected Time of Arrival). The reuse-distance of an address is defined

as the number of intervening events, a notion of time between two consecutive references

to this address. They use this PBHT (Predictor Bucket Hit Table) to save the confidence

counters for reuse distance in each bucket which is log2 of the reuse distance. Two major

operations can be performed on this table one is update, and the other one is lookup. The

lookup takes the PC and checks if it is already present in the table. The update operation

update performs the update of reuse distance for a live PC that already exists in the table.

They manage the replacement by calculating the ETA. The ETA’s are calculated using

the timestamps stored and the reused distance corresponding to the PC entry in PBHT

that brought this block into the cache.

From this paper, we found an inspiration to implement our policy with the RDP
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table and ETA, which we have done ideation for and implemented to some extent.

Interestingly, a paper that has bought breakthrough into cache replacement in terms of

results is yet to be published and is also based on similar lines. This paper has a different

training way of training and calculating the ETA.

4.8 Fairness in multi-core Prefetching

We, along with our co-team for BTP, also did work on the problem for multi-core

prefetching, where we tried to implement a fairness model to allow changes in acceptance

rates of prefetchers for each core based on their utility. For running a multi-core-based

model, we need to create a mix of traces known as workloads. So we analyzed some

traces and categorized them as prefetch friendly, LRU replacement friendly, etc. Now we

take two benchmarks within which this classification was done. There are ten workloads,

each created within these benchmarks. Then there are around ten workloads created

across benchmarks.

Now the model is created as follows:- we define two things utility and acceptance

rates. To modify the acceptance rate, the interval is defined as a number of prefetches

issued which is currently set to 100. The number of prefetches in the past used to

consider the retraining model is 1000. So within an interval of 100, we get to do the

retraining of the acceptance rate. The large interval calculates relative IPC change and

the percentage of prefetches accepted for that particular core. We define utility as the

% pre f etches accepted×∆(IPC). Now, this utility is used to calculate acceptance rates

of all cores based on the proportion of utilities that it gets times the total requested

prefetches. Now, if these exceed the requested prefetches, the acceptance rate of that

core is put to 100%. We have a few statistics of how speedup is achieved for different

workloads over the run with no fairness, which we call the baseline model. These

statistics are discussed in the following chapter.
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Trace1 Trace2 Trace3 Trace 4
602.gcc-s0 623.xalancbmk-s1 607.cactuBSSN-s3 607.cactuBSSN-s0
605.mcf-s1 605.mcf-s4 654.roms-s5 619.lbm-s3

623.xalancbmk-s2 649.fotonik3d-s1 621.wrf-s3 607.cactuBSSN-s0
621.wrf-s3 654.roms-s5 607.cactuBSSN-s0 605.mcf-s4

607.cactuBSSN-s3 602.gcc-s2 623.xalancbmk-s2 607.cactuBSSN-s
605.mcf-s5 605.mcf-s4 649.fotonik3d-s3 607.cactuBSSN-s3
605.mcf-s1 607.cactuBSSN-s3 649.fotonik3d-s3 619.lbm-s3

607.cactuBSSN-s0 602.gcc-s0 649.fotonik3d-s1 605.mcf-s3
605.mcf-s1 605.mcf-s5 623.xalancbmk-s1 649.fotonik3d-s3

623.xalancbmk-s2 605.mcf-s4 607.cactuBSSN-s0 649.fotonik3d-s
pr-10 cc-6 pr-3 bc-12
bfs-14 bfs-10 cc-13 cc-6
pr-10 bfs-10 bc-3 bc-12
bc-3 bc-12 pr-10 bfs-10
pr-3 bc-12 bc-3 bfs-14
bc-3 bfs-14 cc-13 bfs-10
pr-3 bc-12 pr-10 cc-6
bc-3 bc-12 pr-3 bfs-14
pr-10 cc-6 cc-13 bfs-10
bfs-14 bc-12 pr-3 cc-6

649.fotonik3d-s3 607.cactuBSSN-s0 bfs-10 bc-3
654.roms-s3 605.mcf-s1 cc-6 pr-10
621.wrf-s3 cc-13 cc-6 654.roms-s5
605.mcf-s3 607.cactuBSSN-s3 pr-3 bf
619.lbm-s3 bc-3 bc-12 649.fotonik3d

623.xalancbmk-s2 623.xalancbmk-s1 bfs-10 pr-10
bc-12 cc-6 605.mcf-s1 602.gcc-s2

605.mcf-s4 619.lbm-s3 pr-3 cc-13
623.xalancbmk-s1 607.cactuBSSN-s3 pr-10 bc-12

619.lbm-s0 605.mcf-s5 cc-13 bfs-14

Table 4.1: Mixes created with traces from different benchmarks
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CHAPTER 5

Results and Discussions

We started exploring some of the techniques from the reviewed literature and the

simulator on which the policy for cache replacement needed to be implemented. We

present our discussion on the results mentioned in the above respective chapters.

The extension over the SHIP policy we implemented the stats are as mentioned

below.

For overall SPEC17 traces, which we have taken for the testing, we see the geometric

mean of 0.5081, while for LRU, it comes to about 0.5041, so we see a 0.7% improvement,

but which is of no significance. Also, compared to SHIP with LRU policy, there is, in

fact, a degradation of 2% as we see a geometric mean of 0.5182 for SHIP. The average

hit rate of our SHIP-based policy is 0.42. While for the original SHIP policy, it is 0.43.

which is 1% decrement. While comparing to LRU, which has a hit rate of 0.38, we have

about 4% gain.

For overall GAP traces, which we have taken for the testing, we see the geometric

mean of IPC for our SHIP policy which is 0.267, a speedup of a very insignificant amount

compared to LRU. The original SHIP policy has a geometric mean of IPC of 0.277

compared to the LRU policy, which is 0.267. The average hit rates are 0.347, 0.354,

and 0.382, respectively, for LRU, our SHIP-based policy, and the existing SHIP-based

policy.

The plots for a few sample traces have been plotted, showing the IPC speedup over

LRU in both the benchmarks SPEC17 and GAP.



Figure 5.1: IPC speedup of our SHIP based policy v/s existing SHIP based policy over
LRU in some SPEC17 traces

Figure 5.2: IPC speedup of our SHIP based policy v/s existing SHIP based policy over
LRU in some GAP traces

We have also done the practical implementation of the policy RLR in Sethumurugan

et al. (2021) The paper below presents some speedup stats for sampled traces in SPEC17

and GAP benchmarks.
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Figure 5.3: IPC speedup of RLR over LRU in some GAP traces

Figure 5.4: IPC speedup of RLR over LRU in some SPEC 17 traces

So on average, we see most of the traces have significantly achieved a speedup over

LRU policy. The geometric mean of IPC speedup with respect to LRU is 0.96, which

means a 4% drop for SPEC17 traces in performance, implying our results are not intact

with the results given by the paper. Though the traces individually seem to be performing

great in terms of high speedups achieved, for example, in 654.roms-s6 there is almost

400% increase while in case of 654.roms-s1, 607.cactuBSSN-s1, 621.wrf-s0 all of them
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have achieved a speedup of above 100%. In the case of GAP traces, we see a speedup of

limited magnitude compared to SPEC17 traces. For instance, trace bc-5 has a speedup

of around 6% while bfs-8 has a down gradation of about -6%, so overall in GAP, not

much improvement is seen in terms of IPC on an average.

Policy Prefetcher Average hit rate
SHIP - 0.4327

Modified SHIP - 0.4212
LRU - 0.3851
RLR next line 0.7016
LRU next line 0.70816

Table 5.1: Average hit rates on SPEC17 traces

Policy Prefetcher Average hit rate
SHIP - 0.3822

Modified SHIP - 0.3541
LRU - 0.3473
RLR next line 0.5075
LRU next line 0.5142

Table 5.2: Average hit rates on GAP traces

On average, we see that hit rates remain the same almost across three policies without

prefetching. The policies with prefetching have a gain in hit rate although the relative

gain with respect to LRU with prefetching for RLR with prefetching is still negative

as seen from the table. The modified SHIP and SHIP approximately dominate LRU by

4-5% in hit rates.
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5.1 Discussion of stats in multicore prefetching with fair-

ness

We define two main speedups for calculating improvements over baseline.

• Harmonic speedup which is defined as HS = N

∑
N−1
i=0

IPCalone
i

IPCtogether
i

• Weighted speedup which is defined as WS = ∑
N−1
i=0

IPCtogether
i

IPCalone
i

Based on the stats collected we present the speedups for the given 30 mixes.

Version Geomean of Harmonic Speedup Geomean of Weighted Speedup
Preference to core 0 0.939 0.935
Preference to core 1 0.942 0.936
Preference to core 2 0.936 0.948
Preference to core 3 0.936 0.936

fairness model 0.952 0.959

Table 5.3: Geomean of IPC speedup over different cases

Based on the above stats we infer that model is not performing fair enough to give

overall better speedup than no fairness. It is still below by like 5% approximately.
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CHAPTER 6

SUMMARY AND CONCLUSION

The cache replacement domain has been evolving for a long time, with the first few

policies being on a recency-based heuristic. To quote a few of them, LRU(Least Recently

Used) is the most popularly used policy. It is the baseline policy to which the new

algorithms are compared to check performance gains. The few other popular policies

that are based on recency are TLRU(Time aware LRU), SLRU(Segmented LRU), and

MRU(Most recently used). Some frequency-based policies have existed in traditional

mechanisms of cache replacement. The Least Frequently Used(LFU) is one of the most

popularly known policy under this heuristic. Some of the other policies can be named

Least Frequently Recently Used(LFRU) and LFUDA(LFU with dynamic aging). The

traditional algorithms have tried to exploit the relationship between these heuristics to

the optimal cache replacement strategy.

We started with the literature review involving various papers involving modern anal-

ysis techniques for cache replacement in contrast to the traditional techniques mentioned

above. The modern techniques involve the use of deep learning and reinforcement learn-

ing. The learning techniques have not been able to go on the hardware yet. The analysis

was obtained from running the learning-based approaches for cache replacement or pre-

dicting the reuse distance for replacement. We went on to go for implementation of basic

policy building up over the SHIP policy. The policy relies on SHCT(Signature-based hit

count) table, a PC indexed table for confidence values of re-reference prediction. This

heuristic gives significant improvement over baseline LRU. While we tried to use this

SHCT table implementation from SHIP and implement our policy with reuse frequency

and mru position bit, we could see 0.7% of improvement over LRU for overall traces

we ran and tested on. Still, there were no gains over existing SHIP implementation with

LRU.

The implementation of this traditional policy was mainly meant to get familiar with

research in cache replacement involving the extensive use of the simulator, performance

metrics analysis, and refining or tuning parameters. The Champsim simulator is the one



in which we implemented the algorithm. This simulator gives a lot of interfaces like

cache, dram, memory controller, etc. The simulator runs on traces that are available as a

benchmark. This help evaluates the performance over different memory access patterns.

We learned about the different utility functions given for implementing the policy. From

there on, we explored modern techniques of cache replacement.

We studied a few modern approaches to cache replacement, mainly involving deep

learning and reinforcement learning. The various papers in the reviewed literature did

some offline analysis and got the insights to implement policy in hardware. We went

through one paper by Zhong et al. (2018) related to cache replacement using RL. We

took out the code template foundation from the GitHub source for this. Finally, along the

lines of our thought in deep Q learning, we got a paper recently published in HPCA by

Subhash et al. We figured out a way to implement the algorithm. We chose a simulator

from an imitation learning paper provided by google research. We set up the simulator

to involve state space and all other things required for an agent to function.

Finally, after implementing the agent on a few sample traces, we could analyze

a heatmap. Unfortunately, we couldn’t replicate the results to create some standout

features. We couldn’t get hit rates similar to the one in the paper. The one possible

reason for this is that there is no standard simulator for cache replacement in python.

From this analysis, the policy framed was also implemented in Champsim, and those

were also not successfully reproduced. We concluded our Btech Project by analyzing

the stats and presenting them in chapter 5. At last we also did a small research under

area of multi-core cache prefetching which is still under progress.
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